by Robert Connell Clarke
Sexual Propagation
Sexual propagation requires the union of staminate pollen and pistillate ovule, the formation of viable seed, and the creation of individuals with newly recombinant genotypes. Pollen and ovules are formed by reduction divisions (meiosis) in which the 10 chromosome pairs fail to replicate, so that each of the two daughter-cells contains one-half of the chromosomes from the mother cell. This is known as the haploid (in) condition where in = 10 chromosomes.
The diploid condition is restored upon fertilization resulting in diploid (2n) individuals with a haploid set of chromosomes from each parent. Offspring may resemble the staminate, pistillate, both, or neither parent and considerable variation in offspring is to be expected. Traits may be controlled by a single gene or a combination of genes, resulting in further potential diversity. The terms homozygous and heterozygous are useful in describing the genotype of a particular plant. If the genes controlling a trait are the same on one chromosome as those on the opposite member of the chromosome pair (homologous chromosomes), the plant is homozygous and will “breed true” for that trait if self-pollinated or crossed with an individual of identical genotype for that trait. The traits possessed by the homozygous parent will be transmitted to the offspring, which will resemble each other and the parent.
If the genes on one chromosome differ from the genes on its homologous chromosome then the plant is termed heterozygous; the resultant offspring may not possess the parental traits and will most probably differ from each other. Imported Cannabis strains usually exhibit great seedling diversity for most traits and many types will be discovered. To minimize variation in seedlings and ensure preservation of desirable parental traits in offspring, certain careful procedures are followed as illustrated in Chapter III. The actual mechanisms of sexual propagation and seed production will be thoroughly explained here..