by Robert Connell Clarke
Breeding
All of the Cannabis grown in North America today originated in foreign lands. The diligence of our ancestors in their collection and sowing of seeds from superior plants, together with the forces of natural selection, have worked to create native strains with localized characteristics of resistance to pests, diseases, and weather conditions. In other words, they are adapted to particular niches in the ecosystem. This genetic diversity is nature’s way of protecting a species. There is hardly a plant more flexible than Cannabis. As climate, diseases, and pests change, the strain evolves and selects new defenses, programmed into the genetic orders contained in each generation of seeds. Through the importation in recent times of fiber and bud Cannabis, a vast pool of genetic material has appeared in North America. Original fiber strains have escaped and become acclimatized (adapted to the environment), while domestic bud strains (from imported seeds) have, unfortunately, hybridized and acclimatized randomly, until many of the fine gene combinations of imported Cannabis have been lost.
Changes in agricultural techniques brought on by technological pressure, greed, and full-scale eradication programs have altered the selective pressures influencing Cannabis genetics. Large shipments of inferior Cannabis containing poorly selected seeds are appearing in North America and elsewhere, the result of attempts by growers and smugglers to supply an ever increasing market for marijuana. Older varieties of Cannabis, associated with longstanding cultural patterns, may contain genes not found in the newer commercial varieties. As these older varieties and their corresponding cultures become extinct, this genetic information could be lost forever. The increasing popularity of Cannabis and the requirements of agricultural technology will call for uniform hybrid races that are likely to displace primitive populations worldwide.
Limitation of genetic diversity is certain to result from concerted inbreeding for uniformity. Should inbred Cannabis be attacked by some previously unknown pest or disease, this genetic uniformity could prove disastrous due to potentially resistant diverse genotypes having been dropped from the population. If this genetic complement of resistance cannot be reclaimed from primitive parental material, resistance cannot be introduced into the ravaged population. There may also be currently unrecognized favorable traits which could be irretrievably dropped from the Cannabis gene pool. Human intervention can create new phenotypes by selecting and recombining existing genetic variety, but only nature can create variety in the gene pool itself, through the slow process of random mutation.
This does not mean that importation of seed and selective hybridization are always detrimental. Indeed these principles are often the key to crop improvement, but only when applied knowledgeably and cautiously. The rapid search for improvements must not jeopardize the pool of original genetic information on which adaptation relies. At this time, the future of Cannabis lies in govern ment and clandestine collections. These collections are often inadequate, poorly selected and badly maintained. Indeed, the United Nations Cannabis collection used as the primary seed stock for worldwide governmental research is depleted and spoiled.
Several steps must be taken to preserve our vanishing genetic resources, and action must be immediate:
Seeds and pollen should be collected directly from reliable and knowledgeable sources. Government seizures and smuggled shipments are seldom reliable seed sources. The characteristics of both parents must be known; consequently, mixed bales of randomly pollinated marijuana are not suitable seed sources, even if the exact origin of the sample is certain. Direct contact should be made with the farmer-breeder responsible for carrying on the breeding traditions that have produced the sample. Accurate records of every possible parameter of growth must be kept with carefully stored triplicate sets of seeds.
Since Cannabis seeds do not remain viable forever, even under the best storage conditions, seed samples should he replenished every third year. Collections should be planted in conditions as similar as possible to their original niche and allowed to reproduce freely to minimize natural and artificial selection of genes and ensure the preservation of the entire gene pool. Half of the original seed collection should be retained until the viability of further generations is confirmed, and to provide parental material for comparison and back-crossing. Phenotypic data about these subsequent generations should be carefully recorded to aid in understanding the genotypes contained in the collection. Favorable traits of each strain should be characterized and catalogued.
It is possible that in the future, Cannabis cultivation for resale, or even personal use, may be legal but only for approved, patented strains. Special caution would be needed to preserve variety in the gene pool should the patenting of Cannabis strains become a reality.
Favorable traits must be carefully integrated into existing strains.
The task outlined above is not an easy one, given the current legal restrictions on the collection of Cannabis seed. In spite of this, the conscientious cultivator is making a contribution toward preserving and improving the genetics of this interesting plant.
Even if a grower has no desire to attempt crop improvement, successful strains have to be protected so they do not degenerate and can be reproduced if lost. Left to the selective pressures of an introduced environment, most bud strains will degenerate and lose potency as they acclimatize to the new conditions. Let me cite an example of atypical grower with good intentions.
A grower in northern latitudes selected an ideal spot to grow a crop and prepared the soil well. Seeds were selected from the best floral clusters of several strains available over the past few years, both imported and domestic. Nearly all of the staminate plants were removed as they matured and a nearly seedless crop of beautiful plants resulted. After careful consideration, the few seeds from accidental pollination of the best flowers were kept for the following season, These seeds produced even bigger and better plants than the year before and seed collection was performed as before. The third season, most of the plants were not as large or desirable as the second season, but there were many good individuals. Seed collection and cultivation the fourth season resulted in plants inferior even to the first crop, and this trend continued year after year. What went wrong? The grower collected seed from the best plants each year and grew them under the same conditions. The crop improved the first year. Why did the strain degenerate?
This example illustrates the unconscious selection for undesirable traits. The hypothetical cultivator began well by selecting the best seeds available and growing them properly. The seeds selected for the second season resulted from random hybrid pollinations by early-flowering or overlooked staminate plants and by hermaphrodite pistillate plants. Many of these random pollen-parents may be undesirable for breeding since they may pass on tendencies toward premature maturation, retarded maturation, or hermaphrodism. However, the collected hybrid seeds produce, on the average, larger and more desirable offspring than the first season. This condition is called hybrid vigor and results from the hybrid crossing of two diverse gene pools. The tendency is for many of the dominant characteristics from both parents to be transmitted to the F1 offspring, resulting in particularly large and vigorous plants. This increased vigor due to recombination of dominant genes often raises the cannabinoid level of the F1 offspring, but hybridization also opens up the possibility that undesirable (usually recessive) genes may form pairs and express their characteristics in the F2 offspring. Hybrid vigor may also mask inferior qualities due to abnormally rapid growth. During the second season, random pollinations again accounted for a few seeds and these were collected. This selection draws on a huge gene pool and the possible F2 combinations are tremendous. By the third season the gene pool is tending toward early-maturing plants that are accli matized to their new conditions instead of the bud producing conditions of their native environment. These acclimatized members of the third crop have a higher chance of maturing viable seeds than the parental types, and random pollinations will again increase the numbers of acclimatized individuals, and thereby increase the chance that undesirable characteristics associated with acclimatization will be transmitted to the next F2 generation. This effect is compounded from generation to generation and finally results in a fully acclimatized weed strain of little value.
With some care the breeder can avoid these hidden dangers of unconscious selection. Definite goals are vital to progress in breeding Cannabis. What qualities are desired in a strain that it does not already exhibit? What characteristics does a strain exhibit that are unfavorable and should be bred out? Answers to these questions suggest goals for breeding. In addition to a basic knowledge of Cannabis botany, propagation, and genetics, the successful breeder also becomes aware of the most minute differences and similarities in phenotype. A sensitive rapport is established between breeder and plants and at the same time strict guidelines are followed. A simplified explanation of the time-tested principles of plant breeding shows how this works in practice.
Selection is the first and most important step in the breeding of any plant. The work of the great breeder and plant wizard Luther Burbank stands as a beacon to breeders of exotic strains. His success in improving hundreds of flower, fruit, and vegetable crops was the result of his meticulous selection of parents from hundreds of thousands of seedlings and adults from the world over.
Bear in mind that in the production of any new plant, selection plays the all-important part. First, one must get clearly in mind the kind of plant he wants, then breed and select to that end always choosing through a series of years the plants which are approaching nearest the ideal, and rejecting all others. -Luther Burbank (in James, 1964)
Proper selection of prospective parents is only possible if the breeder is familiar with the variable characteristics of Cannabis that may be genetically controlled, has a way to accurately measure these variations, and has established goals for improving these characteristics by selective breeding. A detailed list of variable traits of Cannabis, including parameters of variation for each trait and comments pertaining to selective breeding for or against it, are found at the end of this chapter. By selecting against unfavorable traits while selecting for favorable ones, the unconscious breeding of poor strains is avoided.
The most important part of Burbank’s message on selection tells breeders to choose the plants “which are approaching nearest the ideal,” and REJECT ALL OTHERS! Random pollinations do not allow the control needed to reject the undesirable parents. Any staminate plant that survives detection and roguing (removal from the population), or any stray staminate branch on a pistillate hermaphrodite may become a pollen parent for the next generation. Pollination must be controlled so that only the pollen- and seed-parents that have been carefully selected for favorable traits will give rise to the next generation.
Selection is greatly improved if one has a large sample to choose from! The best plant picked from a group of 10 has far less chance of being significantly different from its fellow seedlings than the best plant selected from a sample of 100,000. Burbank often made his initial selections of parents from samples of up to 500,000 seedlings. Difficulties arise for many breeders because they lack the space to keep enough examples of each strain to allow a significant selection. A Cannabis breeder’s goals are restricted by the amount of space available. Formulating a well defined goal lowers the number of individuals needed to perform effective crosses. Another technique used by breeders since the time of Burbank is to make early selections. Seedling plants take up much less space than adults. Thousands of seeds can be germinated in a flat. A flat takes up the same space as a hundred 10-centimeter (4-inch) sprouts or sixteen 30-centimeter (12-inch) seedlings or one 60-centimeter (24-inch) juvenile. An adult plant can easily take up as much space as a hundred flats. Simple arithmetic shows that as many as 10,000 sprouts can be screened in the space required by each mature plant, provided enough seeds are available. Seeds of rare strains are quite valuable and exotic; however, careful selection applied to thousands of individuals, even of such common strains as those from Colombia or Mexico, may produce better offspring than plants from a rare strain where there is little or no opportunity for selection after germination. This does not mean that rare strains are not valuable, but careful selection is even more important to successful breeding. The random pollinations that produce the seeds in most imported marijuana assure a hybrid condition which results in great seedling diversity. Distinctive plants are not hard to discover if the seedling sample is large enough.
Traits considered desirable when breeding Cannabis often involve the yield and quality of the final product, but these characteristics can only be accurately measured after the plant has been harvested and long after it is possible to select or breed it. Early seedling selection, therefore, only works for the most basic traits. These are selected first, and later selections focus on the most desirable characteristics exhibited by juvenile or adult plants. Early traits often give clues to mature phenotypic expression, and criteria for effective early seedling selection are easy to establish. As an example, particularly tall and thin seedlings might prove to be good parents for pulp or fiber production, while seedlings of short internode length and compound branching may be more suitable for flower production. However, many important traits to be selected for in Cannabis floral clusters cannot be judged until long after the parents are gone, so many crosses are made early and selection of seeds made at a later date.
Hybridization is the process of mixing differing gene pools to produce offspring of great genetic variation from which distinctive individuals can be selected. The wind performs random hybridization in nature. Under cultivation, breeders take over to produce specific, controlled hybrids. This process is also known as cross-pollination, cross-fertilization, or simply crossing. If seeds result, they will produce hybrid offspring exhibiting some characteristics from each parent.
Large amounts of hybrid seed are most easily pro duced by planting two strains side by side, removing the staininate plants of the seed strain, and allowing nature to take its course. Pollen- or seed-sterile strains could be developed for the production of large amounts of hybrid seed without the labor of thinning; however, genes for sterility are rare. It is important to remember that parental weak nesses are transmitted to offspring as well as strengths. Because of this, the most vigorous, healthy plants are always used for hybrid crosses.
Also, sports (plants or parts of plants carrying and expressing spontaneous mutations) most easily transmit mutant genes to the offspring if they are used as pollen parents. If the parents represent diverse gene pools, hybrid vigor results, because dominant genes tend to carry valuable traits and the differing dominant genes inherited from each parent mask recessive traits inherited from the other. This gives rise to particularly large, healthy individuals. To increase hybrid vigor in offspring, parents of different geographic origins are selected since they will probably represent more diverse gene pools.
Occasionally hybrid offspring will prove inferior to both parents, but the first generation may still contain recessive genes for a favorable characteristic seen in a parent if the parent was homozygous for that trait. First generation (F1) hybrids are therefore inbred to allow recessive genes to recombine and express the desired parental trait. Many breeders stop with the first cross and never realize the genetic potential of their strain. They fail to produce an F2 generation by crossing or self-pollinating F1 offspring. Since most domestic Cannabis strains are F1 hybrids for many characteristics, great diversity and recessive recombination can result from inbreeding domestic hybrid strains. In this way the breeding of the F1 hybrids has afready been accomplished, and a year is saved by going directly to F2 hybrids. These F2 hybrids are more likely to express recessive parental traits. From the F2 hybrid generation selections can be made for parents which are used to start new true-breeding strains. Indeed, F2 hybrids might appear with more extreme characteristics than either of the P~ parents. (For example, P1 high-THC X P1 low-THC yields F1 hybrids of intermediate THC content. Selfing the F1 yields F2 hybrids, of both P1 [high and low THC] phenotypes, intermediate F1 phenotypes, and extra-high THC as well as extra-low THC phenotypes.)
Also, as a result of gene recombination, F1 hybrids are not true-breeding and must be reproduced from the original parental strains. When breeders create hybrids they try to produce enough seeds to last for several successive years of cultivation, After initial field tests, undesirable hybrid seeds are destroyed and desirable hybrid seeds stored for later use. If hybrids are to be reproduced, a clone is saved from each parental plant to preserve original parental genes.
Back-crossing is another technique used to produce offspring with reinforced parental characteristics. In this case, a cross is made between one of the F~ or subsequent offspring and either of the parents expressing the desired trait. Once again this provides a chance for recombination and possible expression of the selected parental trait. Backcrossing is a valuable way of producing new strains, but it is often difficult because Cannabis is an annual, so special care is taken to save parental stock for back-crossing the following year. Indoor lighting or greenhouses can be used to protect breeding stock from winter weather. In tropical areas plants may live outside all year. In addition to saving particular parents, a successful breeder always saves many seeds from the original P1 group that produced the valuable characteristic so that other P1 plants also exhibiting the characteristic can be grown and selected for back-crossing at a later time.
Several types of breeding are summarized as follows:
1 – Crossing two varieties having outstanding qualities (hybridization).
2 – Crossing individuals from the F1 generation or selfing F1 individuals to realize the possibilities of the original cross (differentiation).
3 – Back crossing to establish original parental types.
4 – Crossing two similar true-breeding (homozygous) varieties to preserve a mutual trait and restore vigor.
It should be noted that a hybrid plant is not usually hybrid for all characteristics nor does a true-breeding strain breed true for all characteristics. When discussing crosses, we are talking about the inheritance of one or a few traits only. The strain may be true-breeding for only a few traits, hybrid for the rest. Monohybrid crosses involve one trait, dihybrid crosses involve two traits, and so forth. Plants have certain limits of growth, and breeding can only produce a plant that is an expression of some gene already present in the total gene pool. Nothing is actually created by breeding; it is merely the recombination of existing genes into new genotypes. But the possibilities of recombination are nearly limitless.
The most common use of hybridization is to cross two outstanding varieties. Hybrids can be produced by crossing selected individuals from different high-potency strains of different origins, such as Thailand and Mexico. These two parents may share only the characteristic of high psychoactivity and differ in nearly every other respect. From thisgreat exchange of genes many phenotypes may appear in the F2 generation. From these offspring the breeder selects individuals that express the best characteristics of the parents. As an example, consider some of the offspring from the P1 (parental) cross: Mexico X Thailand. In this case, genes for high THC content are selected from both parents while other desirable characteristics can be selected from either one. Genes for large stature and early maturation are selected from the Mexican seed-parent, and genes for large calyx size and sweet floral aroma are selected from the Thai pollen parent. Many of the F1 offspring exhibit several of the desired characteristics. To further promote gene segregation, the plants most nearly approaching the ideal are crossed among themselves. The F2 generation is a great source of variation and recessive expression. In the F2 generation there are several individuals out of many that exhibit all five of the selected characteristics. Now the process of inbreeding begins, using the desirable F2 parents.
If possible, two or more separate lines are started, never allowing them to interbreed. In this case one acceptable staminate plant is selected along with two pistillate plants (or vice versa). Crosses between the pollen parent and the two seed parents result in two lines of inheritance with slightly differing genetics, but each expressing the desired characteristics. Each generation will produce new, more acceptable combinations.
If two inbred strains are crossed, F1 hybrids will be less variable than if two hybrid strains are crossed. This comes from limiting the diversity of the gene pools in the two strains to be hybridized through previous inbreeding. Further independent selection and inbreeding of the best plants for several generations will establish two strains which are true-breeding for all the originally selected traits. This means that all the offspring from any parents in the strain will give rise to seedlings which all exhibit the selected traits. Successive inbreeding may by this time have resulted in steady decline in the vigor of the strain.
When lack of vigor interferes with selecting phenotypes for size and hardiness, the two separately selected strains can then be interbred to recombine nonselected genes and restore vigor. This will probably not interfere with breeding for the selected traits unless two different gene systems control the same trait in the two separate lines, and this is highly unlikely. Now the breeder has produced a hybrid strain that breeds true for large size, early maturation, large sweet-smelling calyxes, and high THC level. The goal has been reached!
Wind pollination and dioecious sexuality favor a heterozygous gene pool in Cannabis. Through Anbreeding, hybrids are adapted from a heterozygous gene pool to a homozygous gene pool, providing the genetic stability needed to create true-breeding strains. Establishing pure strains enables the breeder to make hybrid crosses with a better chance of predicting the outcome. Hybrids can be created that are not reproducible in the F2 generation. Commercial strains of seeds could be developed that would have to be purchased each year, because the F1 hybrids of two pure-bred lines do not breed true. Thus, a seed breeder can protect the investment in the results of breeding, since it would be nearly impossible to reproduce the parents from F2 seeds.
At this time it seems unlikely that a plant patent would be awarded for a pure-breeding strain of Cannabis. In the future, however, with the legalization of cultivation, it is a certainty that corporations with the time, space, and money to produce pure and hybrid strains of Cannabis will apply for patents. It may be legal to grow only certain patented strains produced by large seed companies. Will this be how government and industry combine to control the quality and quantity of Cannabis?